EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR QUASILINEAR ELLIPTIC SYSTEMS INVOLVING CRITICAL HARDY–SOBOLEV EXPONENTS AND SIGN-CHANGING WEIGHT FUNCTION

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

Multiple results for critical quasilinear elliptic systems involving concave-convex nonlinearities and sign-changing weight functions∗

This paper is devoted to study the multiplicity of nontrivial nonnegative or positive solutions to the following systems    −4pu = λa1(x)|u|q−2u + b(x)Fu(u, v), in Ω, −4pv = λa2(x)|v|q−2v + b(x)Fv(u, v), in Ω, u = v = 0, on ∂Ω, where Ω ⊂ R is a bounded domain with smooth boundary ∂Ω; 1 < q < p < N , p∗ = Np N−p ; 4pw = div(|∇w|p−2∇w) denotes the p-Laplacian operator; λ > 0 is a positive pa...

متن کامل

Existence of Positive Solutions for Quasilinear Elliptic Systems with Sobolev Critical Exponents

In this paper, we consider the existence of positive solutions to the following problem ⎪⎪⎨ ⎪⎪⎩ −div(|∇u|p−2∇u) = ∂F ∂u (u,v)+ ε p−1g(x) in Ω, −div(|∇v|q−2∇v) = ∂F ∂v (u,v)+ εq−1h(x) in Ω, u,v > 0 in Ω, u = v = 0 on ∂Ω, where Ω is a bounded smooth domain in RN ; F ∈C1((R+)2,R+) is positively homogeneous of degree μ ; g,h ∈C1(Ω)\{0} ; and ε is a positive parameter. Using sub-supersolution method...

متن کامل

Multiplicity of positive solutions for critical singular elliptic systems with sign - changing weight function ∗

In this paper, the existence and multiplicity of positive solutions for a critical singular elliptic system with concave and convex nonlinearity and sign-changing weight function, are established. With the help of the Nehari manifold, we prove that the system has at least two positive solutions via variational methods.

متن کامل

Multiple Positive Solutions for a Quasilinear Elliptic System Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions

Let Ω 0 be an-open bounded domain in R N ≥ 3 and p∗ pN/ N − p . We consider the following quasilinear elliptic system of two equations inW 0 Ω ×W 1,p 0 Ω : −Δpu λf x |u|q−2u α/ α β h x |u|α−2u|v|β,−Δpv μg x |v|q−2v β/ α β h x |u|α|v|β−2v, where λ, μ > 0, Δp denotes the p-Laplacian operator, 1 ≤ q < p < N,α, β > 1 satisfy p < α β ≤ p∗, and f, g, h are continuous functions on Ω which are somewher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Analysis

سال: 2012

ISSN: 1392-6292,1648-3510

DOI: 10.3846/13926292.2012.685956